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Abstract. A recently proposed method of a continuous sequence of unitary transformations will be used
to investigate the dynamics of phonons, which are coupled to an electronic system. This transformation
decouples the interaction between electrons and phonons. Damping of the phonons enters through the
observation, that the phonon creation and annihilation operators decay under this transformation into a
superposition of electronic particle-hole excitations with a pronounced peak, where these excitations are
degenerate in energy with the renormalized phonon frequency. This procedure allows the determination
of the phonon correlation function and the spectral function. The width of this function is proportional
to the square of the electron-phonon coupling and agrees with the conventional result for electron-phonon
damping. The function itself is non-Lorentzian, but apart from these scales independent of the electron-
phonon coupling.

PACS. 63.20.Kr Phonon electron and phonon phonon interactions – 43.35.+d Ultrasonics, quantum acous-
tics, and physical effects of sound – 02.90.+p Other topics in mathematical methods in physics

1 Introduction

Since the discovery of polarons and the theoretical expla-
nation of superconductivity the electron-phonon problem
has been studied extensively. Essential for the theoretical
description of the superconducting state was the inter-
pretation of an effective interaction between the electrons
of a many-particle system. The famous BCS-theory de-
veloped by Bardeen, Cooper and Schrieffer [2] is based
on this idea. In 1952 Fröhlich gave a procedure to elimi-
nate the electron-phonon interaction and to generate an
effective electron-electron interaction by use of a unitary
transformation [4]. This phonon-induced term appears in
the Hamiltonian in addition to the Coulomb interaction.

Fröhlich’s approach yields attractive and repulsive con-
tributions to the interaction separated by a singularity.
Using the flow equations [18] Lenz and one of the au-
thors [16] obtained an interaction without such singular-
ity, which is attractive for all electron momenta.

Mielke [5,6] calculated from this effective interaction
as well as from the interaction obtained by Glazek’s and
Wilson’s similarity renormalization approach [7] which is
similar in spirit the critical temperature for supercon-
ductivity and compared the results with those obtained
from the Eliashberg theory [8], in particular with those

? Dedicated to Prof. Heinz Horner on the occasion of his 60th
birthday.

a e-mail: ragwitz@tphys.uni-heidelberg.de
b e-mail: wegner@tphys.uni-heidelberg.de

obtained by Allen and Dynes [9] and with the approx-
imation by Mac Millan [10] and with experiment. He
found that the results for Tc obtained with these methods
agree within a few percent for various types of spectra
(Einstein, lead, mercury). Only for stronger coupling the
Tc by Mac Millan was distinctly smaller. This shows that
this method works well for this static quantity.

The basic idea of this procedure is to perform a se-
quence of infinitesimal unitary transformations instead of
transforming the Hamiltonian in one single step. Follow-
ing this approach the transformed Hamiltonian and the
infinitesimal generator of the unitary transformations η
become functions of the so called flow parameter l, which
has dimension (Energy)−2. It corresponds to the energy
difference that is just being decoupled, that is, for small l
large energy differences are decoupled first; smaller energy
differences are dealt with later for larger values of l. In a
differential formulation the transformation reads

dH

dl
= [η(l),H(l)], H(l = 0) = H (1)

with an anti-hermitian generator η(l) related to the uni-
tary transformation U(l) by

η(l) =
dU(l)

dl
U†(l). (2)

In order to remove off-diagonal contributions, the choice
η = [Hd,Hr] has been suggested in reference [18], where
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Hd is the diagonal, Hr the off-diagonal part. Consid-
ering the electron-phonon problem the phonon-number
violating part will be eliminated in order to obtain a
block-diagonal Hamiltonian which conserves the number
of phonons. In order to develop the differential equa-
tions (1) some approximations will be necessary. By
means of the unitary transformations new types of in-
teractions mainly involving larger numbers of particles
will be generated. They will be neglected after normal
ordering.

At this point the question arises whether besides cal-
culating renormalized energies one can also obtain some
information about the dynamics of the electron-phonon
problem. At first sight it is unclear how the transformed
Hamiltonian, which does not contain any interaction be-
tween electrons and phonons can describe a phenomenon
like damping of phonons. Usually such properties are de-
termined by calculating dynamical correlation functions

like 〈[aq(t), a†q(0)]〉, where a(†) are phonon creation and
annihilation operators, respectively. As we will see, dy-
namics enters through the following fact: if one performs
a unitary transformation, all the observables have to be
transformed as well. In other words, every unitary trans-
formation causes a change of basis. Therefore the cre-
ation and annihilation operators also have to be trans-
formed to the “new” basis. This requires to solve the flow
equation

daq(l)

dl
= [η(l), aq(l)]. (3)

As we will see these operators will “decay” completely un-
der the unitary transformation, i.e. are completely trans-
formed into terms which only contain electron operators.
In this way we will see that the information on the dy-
namical properties of the solid is contained in the unitary
transformation that has been used to block-diagonalize
the Hamiltonian. This approach was used by Kehrein,
Mielke and Neu for the spin-correlation in the spin-boson
model [11–14]. A rather general examination of dissipa-
tion in the frame of flow equations is given by Kehrein
and Mielke in [15].

Our paper is organized as follows. In the following sec-
tion a short review of the transformation of the Hamilto-
nian will be given. Additionally we will be able to give an
analytical expression for the q-dependence of the asymp-
totic solution for the phonon energies given in [16]. In
Section 3 the flow equations describing the transforma-
tion of the phonon operators will be derived and a sum
rule for these operators will be given. In the next sec-
tion the coupled differential equations will be reduced to
a nonlinear equations of the Volterra-type. In Section 4
the solutions of the equations in particular their asymp-
totic behavior will be given. An important role plays the
asymptotic behavior of the phonon energies. In Section 5
we will be able to calculate the phonon-spectral function
for the non-superconducting state and to give an ana-
lytical expression for the dependence of this function on
the electron-phonon coupling. The last section contains a
short summary.

2 Flow equations for the Hamiltonian

The Hamiltonian of the model will be written as

H =
∑
q

ωq : a†qaq : +
∑
k

εk : c†kck : +E

+
∑
k,q

Mq(a
†
−q + aq)c

†
k+qck ≡ H0 +He−p. (4)

Here and in the following k stands for k = {k, σ}, i.e.
the spin is conserved by the electron-phonon interaction,
thus no spin-subscript is needed. In the following all k and
k′ sums imply summation over the spin. As soon as we
transfer to integrals we will no longer imply summation

over spin (compare Eq. (19)). a(†) are bosonic creation
and annihilation operators, respectively. c(†) denote the
corresponding fermionic operators. : ... : denotes normal-
ordering and E is a constant energy. Further Mq is the
coupling between electrons and phonons. Following the
approach of Bloch [3] or Nordheim [17] it is indepen-
dent of the electron momentum. If there is need to spec-
ify εk or ωq a quadratic dispersion for electrons and a
linear dispersion for phonons will be assumed. Finally it
should be emphasized that neither the Coulomb repul-
sion nor umklapp-processes will be taken into considera-
tion.

To eliminate the electron-phonon interaction Fröhlich
used unitary transformations as mentioned above. The
transformed Hamiltonian contains a generated new inter-
action between the electrons, and the occurring energies
are renormalized. But Fröhlich’s approach leads to some
problems. In certain regions of momentum space the effec-
tive electron-electron interaction exhibits singularities and
the electron-phonon interaction is not transformed away
at the singularity.

By applying one single unitary transformation to a
Hamiltonian one treats all energy scales in one step.
It seems to be more reasonable to diagonalize step by
step between states with different energy differences.
This will be achieved if a sequence of transformations
is used for diagonalization. In an infinitesimal formu-
lation of this continuous transformation the renormal-
ization of the coupling constants is described by the
flow equations. In 1996 Lenz and one of the authors
where able to transform the Hamiltonian of the electron-
phonon problem using flow equations. In the follow-
ing sections we will often refer to this paper [16]. For
convenience a short summary of their results will be
given here. Additionally we will further examine the q-
dependence of the asymptotic solution for ωq(l). The no-
tation and the approximations we will use are similar
to [16].

In order to eliminate the electron-phonon coupling by
flow equations one divides the Hamiltonian of the model

H = Hd +Hr, (5)
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into the phonon-number conserving part

Hd =
∑
q

ωq : a†qaq : +
∑
k

εk : c†kck :

+
∑
k,k′,δ

Vk,k′,δ : c†k+δc
†
k′−δck′ck : +E

≡ Hph +He +He−e +E

and the phonon-number violating part

Hr ≡ He−p =
∑
k,q

(Mk,qa
†
−q +M∗k+q,−qaq)c

†
k+qck.

The initial conditions for the occurring coefficients are

Mk,q(l = 0) = M∗k+q,−q(l = 0) = Mq(0) ≡Mq

Vk,k′,δ(l = 0) = 0.

If the electron-phonon coupling Mq is not real, then it can
be made real by a simple gauge transformation. Therefore
in the following we will assume, that it is real. Moreover
we assume invariance under reflection, that is

M−q = Mq, ω−q = ωq, ε−k = εk. (6)

The choice of the generator of the continuous unitary
transformation follows the suggestion η = [Hd,Hr] and
takes into account the approximation to neglect terms of
order Mq(0)3 and higher. Therefore He−e will not be con-
sidered in the determination of η and one obtains

η :=
∑
k,q

Mk,qαk,q(a
†
−qc
†
k+qck − a−qc

†
kck+q), (7)

where

αk,q = εk+q − εk + ωq. (8)

The commutator [η,H] contains newly generated interac-
tions describing two-phonon processes and the interaction
of a phonon with two electrons, which have been neglected.
A further interaction representing the generation and an-
nihilation of two phonons has been transformed away by
adding the term

η(2) =
∑
q

ξq

(
a†qa
†
−q − aqa−q

)
(9)

to the generator of the unitary transformation η, where

ξq =
1

2ωq

∑
k

nk
(
Mk,qMk+q,−qαk+q,−q

−Mk−q,qMk,−qαk,−q
)

(10)

and n denotes the electron occupation number being 1
below the Fermi-edge and 0 above. The desired block-
diagonal Hamiltonian becomes

Hd(∞) =
∑
q

ωq(∞) : a†qaq : +
∑
k

εk(∞) : c†kck :

+
∑
k,k′,δ

Vk,k′,δ(∞) : c†k+δc
†
k′−δck′ck : +E(∞)

+ irrelevant terms. (11)

In second order in Mq and taking into account the initial
condition Vk,k′,δ(0) = 0 the renormalization of the coeffi-
cients is described by the flow equations

dMk,q

dl
= −α2

k,qMk,q (12)

dVk,k′,q

dl
= −Mk,qMk′−q,qαk′−q,q

−Mk+q,−qMk′,−qαk′,−q (13)

dωq

dl
= 2

∑
k

M2
k,qαk,q(nk+q − nk) (14)

dεk

dl
= 2

∑
q

(
(n̂q + nk+q)M

2
k+q,−qαk+q,−q

− (n̂q + 1− nk+q)M
2
k,qαk,q

)
(15)

dE

dl
= 2

∑
k,q

(n̂qnk+q + nknk+q − nk − nkn̂q)

×M2
k,qαk,q. (16)

The phonon occupation number (which actually vanishes
at zero temperature) is denoted by n̂. In the following
sections we will be mainly concerned with the dynamical
properties of the phonons. That is why only equations (12,
14) will be of further interest. They can be solved exactly if
again all terms of order M3

q and higher are neglected. For
the renormalized value of the phonon energy one finds the
same result as one obtains using Fröhlich transformation
or perturbation theory. It is given by

ωq(∞) = ωq(0)

−
∑
k

M2
qnk

(
1

εk+q − εk + ωq
+

1

εk+q − εk − ωq

)
· (17)

For a variety of physical questions of interest it is necessary
to solve the flow equations not only for the singular value
l = ∞ but also to consider the approach to this value,
which is described by the asymptotic behavior. This gives
the opportunity to go beyond perturbation theory if one
takes into account any order ofMq. The renormalization of
the electron energies εk was neglected, assuming that the
electron-phonon coupling is not strong enough to cause a
significant change of εk. To derive the asymptotic behavior
of ωq(l) one integrates equation (12) to obtain

Mk,q(l) = Mq(0)e
−

l∫
0

dl′(εk+q−εk+ωq(l
′))

2

. (18)

As the authors mentioned in [16] the couplingMk,q decays
exponentially as long as αk,q does not lie in the vicinity
of a resonance αk,q ≈ 0. Thus the behavior of ωq for large
l is determined only by the contributions coming from
small αk,q. We will now evaluate the sums in equation (14)
specializing to three spatial dimensions and for the case
of quadratic electron dispersion εk = k2/2m. This can be
written as a sum of the form

∑
k nkf(q·k). Performing the

thermodynamic limit, introducing σ = q ·k/q one obtains
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with the quantity Γ := 4π
(
V/(2π)3

)
∑
k

nkf(q · k) =
Γ

2

kF∫
−kF

dσ(k2
F − σ

2)f(σq) (19)

with the Fermi-momentum kF . It is useful to introduce
the function

αq(σ, ω) =
σq

m
+

q2

2m
+ ωq. (20)

Then one obtains

dωq

dl
= 2

∑
k

nk(M2
k−q,qαk−q,q −M

2
k,qαk,q)

= −ΓM2
q

kF∫
−kF

dσ(k2
F − σ

2)

×αq(σ,−ωq(l))e
−2

l∫
0

dl′α2
q(σ,−ωq(l

′))

−ΓM2
q

kF∫
−kF

dσ(k2
F − σ

2)

×αq(σ, ωq(l))e
−2

l∫
0

dl′α2
q(σ,ωq(l

′))
. (21)

Extending the integrals over σ from −∞ to +∞ and ne-
glecting the exponentially decaying tails which holds for
sufficiently large l, if the sound velocity is smaller than
the Fermi-velocity (which is the normal situation) and q
is less than the Fermi-momentum, then one obtains

dωq

dl
= −2ΓMq(0)2

× exp

−2

l∫
0

ω2
q(l
′)dl′ +

2

l

 l∫
0

ωq(l
′)dl′

2


×
m2

q

√
π

2l
·

[
ωq(ωq − ωq) +

1

4l

]
· (22)

with the average frequency

ωq :=
1

l

l∫
0

dl′ωq(l
′). (23)

Assuming an algebraic decay of ωq a consistent solution
to this equation for large l is

ωq(l) ≈ ωq(∞) +
1

2
√
l
· (24)

This solution implies that the approach to the limit l →∞
is independent of q. One can show, however rescaling equa-
tion (22) that the value of the flow parameter l, for which
the asymptotic behavior starts to be valid depends on

q [16]. To get an analytical understanding of this state-
ment one makes the following new ansatz:

ωq(l) = ωq(∞) +
1

2
√
l + l0(q)

· (25)

Substituted in equation (22) this yields in leading order
in l

l0 =
1

(4ΓM2
q
m2

q
ωq(∞)

√
π
2 e

2)2
· (26)

Therefore we have found a solution for ωq(l) which ex-
plicitly contains the domain of validity in dependence of
q. Since for acoustic phonons M2

q ∝ q the dependence

l0 ∝ 1/q2 shows that for small q the asymptotic behavior
is only reached for very large l. On the other hand it is
obvious that for vanishing coupling no renormalization of
the phonon energies takes place. Furthermore the solution
is universal in the sense that different couplings yield in
principle the same asymptotic behavior, they only differ
in the value of l for which the asymptotic behavior starts
to be valid.

3 Flow equations for the phonon operators

In this section we will describe the transformation of the
bosonic creation and annihilation operators a

(†)
q , respec-

tively. We will derive the corresponding flow equations.
Approximations which will be very similar to those per-
formed in the preceding section will be necessary. Finally
we will find a sum rule for the relevant coefficients. We
use the following ansatz for aq(l)

aq(l) = µq(l)aq + νq(l)a
†
−q +

∑
k

γk,q(l) : c†k−qck : . (27)

The initial conditions for the coefficients are

µq(l = 0) = 1; νq(l = 0) = γk,q(l = 0) = 0. (28)

The generator of the unitary transformation is given in
equations (7, 8). Then the flow equation for aq(l) yields

daq

dl
= −

∑
k

(Mk−q,qαk−q,qνq +Mk,−qαk,−qµq) : c†k−qck :

+
∑
k

γk,q(nk − nk−q)(Mk−q,qαk−q,qa
†
−q

−Mk,−qαk,−qaq)− 2ξq(µqa
†
−q + νqaq)

+
∑
k,q′

(Mk,q′αk,q′a
†
−q′ −Mk+q′,−q′αk+q′,−q′aq′)

×(γk+q,q : c†k+q′ck+q : −γk+q′,q : c†k−q+q′ck :). (29)

The last line contains newly generated terms describing
two-phonon processes. Similar to the transformation of
the Hamiltonian we will neglect these interactions here.
Furthermore the additional term η(2) in the generator of
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the unitary transformation will produce contributions to
the commutator which decay exponentially as function of
the flow parameter l. Therefore η(2) will not be of further
interest in the following considerations. With these ap-
proximations in mind we obtain the following flow equa-
tions

dµq

dl
= −

∑
k

γk,q(nk − nk−q)Mk,−qαk,−q (30)

dνq

dl
=
∑
k

γk,q(nk − nk−q)Mk−q,qαk−q,q (31)

dγk,q

dl
= −Mk−q,qαk−q,qνq −Mk,−qαk,−qµq. (32)

As a first step in actually analyzing equations (30–32) one
observes that

|µq(l)|
2 − |νq(l)|

2 +
∑
k

|γk,q(l)|
2(nk−q − nk) = 1 (33)

is a constant. This sum rule reflects the fact that the
commutator [aq(l), a

†
q(l)] should be conserved under the

unitary transformation. Within our approximation this
holds for the constant after normal ordering. A similar
relation holds also for the spin-boson problem [14]. From
this sum rule Kehrein and Mielke obtained estimations
about the convergency of the coefficients since only sums
over positive numbers were involved. A similar procedure
is not possible in our case due to the minus signs in equa-
tion (33).

Integration of equation (32) and insertion in (30, 31)
gives

dµq

dl
=

∑
k

[
(nk − nk−q)Mk,−q(l)αk,−q(l)

×

l∫
0

dl′
(
Mk−q,q(l

′)αk−q,q(l
′)νq(l

′)

+Mk,−q(l
′)αk,−q(l

′)µq(l
′)
)]

(34)

dνq

dl
= −

∑
k

[
(nk − nk−q)Mk−q,q(l)αk−q,q(l)

×

l∫
0

dl′
(
Mk−q,q(l

′)αk−q,q(l
′)νq(l

′)

+Mk,−q(l
′)αk,−q(l

′)µq(l
′)
)]
. (35)

Again we replace the sums by integrals, specialize to three
spatial dimensions and the case of quadratic electron dis-
persion εk = k2/2m, and obtain

dµq

dl
=

l∫
0

dl′K1(l, l′)µq(l
′) +

l∫
0

dl′K2(l, l′)νq(l
′), (36)

dνq

dl
=

l∫
0

dl′K2(l, l′)µq(l
′) +

l∫
0

dl′K1(l, l′)νq(l
′) (37)

where

K1(l, l′) =
∑
k

nk
[
αk,−q(l)Mk,−q(l)αk,−q(l

′)Mk,−q(l
′)

− αk+q,−q(l)Mk+q,−q(l)αk+q,−q(l
′)Mk+q,−q(l

′)
]

=
Γ

2
M2
q

kF∫
−kF

dσ(k2
F − σ

2)
[
αq
(
σ, ωq(l)

)
αq
(
σ, ωq(l

′)
)

× e
−(

l∫
0
dl′′+

∫ l′
0 dl′′)α2

q[σ,ωq(l′′)]
− {ω → −ω}

]
(38)

K2(l, l′) =
∑
k

nk
[
αk,−q(l)Mk,−q(l)αk−q,q(l

′)Mk−q,q(l
′)

− αk+q,−q(l)Mk+q,−q(l)αk,q(l
′)Mk,q(l

′)
]

= −
Γ

2
M2
q

kF∫
−kF

dσ(k2
F − σ

2)
[
αq
(
σ, ωq(l)

)
× αq

(
σ,−ωq(l

′)
)

× e
−
l∫
0
dl′′α2

q

(
σ,ωq(l′′)

)
−
l′∫
0
dl′′α2

q

(
σ,−ωq(l′′)

)
− {ω → −ω}

]
. (39)

The solutions of these linear integro-differential equations
of the Volterra-type will be discussed in the next section.

4 The asymptotic behavior

In this section we derive the behavior of µq(l) and νq(l)
for large l. In a first approach we will neglect the flow
of the phonon energies ωq and of the electron energies
εk; only the l-dependence of the couplings Mk,q(l) and
of the coefficients µq(l), νq(l), γk,q(l) will be taken into
consideration.

For sufficiently large l the integrand decays rapidly as
a function of σ and we extend the integration from −∞
to +∞ as before. Then one has

K1(l, l′) = −Γ
M2
qm

2ωq
√
π

2q

1

(l + l′)3/2
(40)

K2(l, l′) = Γ
M2
qm

2ωq
√
π

q

l − l′

(l + l′)5/2

×

(
3

2
− 4ω2

q

ll′

l + l′

)
exp

[
−4ω2

q

ll′

l + l′

]
.(41)

The equations (36, 37) can be added and subtracted, so
that

d(µq(l) + νq(l))

dl
=

l∫
0

dl′
[
K1(l, l′) +K2(l, l′)

](
µq(l

′) + νq(l
′)
)

(42)
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d(µq(l)− νq(l))

dl
=

l∫
0

dl′
[
K1(l, l′)−K2(l, l′)

](
µq(l

′)− νq(l
′)
)
. (43)

The kernel K2(l, l′) decays exponentially for large l and
l′, whereas K1(l, l′) decays algebraically. From the initial
conditions µq(0) = 1 and νq(0) = 0 and the property of the
kernels K1(l′′, l′)� K2(l′′, l′) it follows, that µq(l)± νq(l)
differ only weakly, which implies µq(l) � νq(l). This ar-
gument is valid only if νq stays small until the expo-
nential decay becomes important, which happens for l >
1/(4ω2

q). Integration of equation (37) with equation (41)

and µq(l
′) = 1, νq(l

′) = 0 yields νq = const ΓM2
qm

2/q.
Thus for small couplings Mq we find, that ν remains small
since for acoustic phonons M2

q ∝ q. This has to be ex-

pected, since excitations by a†−q and aq differ by an energy
2ωq and should only mix for strong interactions.

Although significant simplifications have been ob-
tained for the coupled equations no analytical solution
seems to be possible yet. A numerical solution yields an
oscillating slowly decaying behavior. To get a better un-
derstanding of the behavior in the asymptotic regime we
will take into account the l-dependence of ω.

When transforming the Hamiltonian, one has learned
that it is possible to go beyond perturbation theory, if one
takes into account the flow of the phonon energies ωq. We
will see that the flow of ωq significantly alters the conver-
gency of the coefficients. Since the coupling Mk,q decays
exponentially as long as αk,q does not lie in the vicinity
of a resonance αk,q ≈ 0 the behavior of the coefficients
for large l is determined only by the contributions coming
from small αk,q. Again we start from equations (38, 39)
and perform first the l′′ integrals

l∫
0

dl′′α2
q(σ, ωq(l

′′)) =

lα2
q(σ, ωq(l)) +

l∫
0

dl′′(ωq(l
′′)− ωq(l))

2 =

lα2
q(σ, ωq(l)) +

1

4
ln
l+ l0

l0
−

(
√
l + l0 −

√
l0)2

l
(44)

with the average frequency

ωq =
1

l

l∫
0

dl′ωq(l
′) = ωq(∞) +

1

l

(√
l + l0 −

√
l0

)
.

(45)

Then with

f(l) :=

(
l0

l0 + l

)1/4

e

(
l+2l0−2

√
l+l0
√
l0

l

)
(46)

we have

K1,2(l, l′) = ±
ΓM2

q

2
f(l)f(l′)

×

kF∫
−kF

dσ(k2
F − σ

2)
[
αq
(
σ, ωq(l)

)
αq
(
σ,±ωq(l

′)
)

×e−lα
2
q(σ,ωq(l))−l′α2

q

(
σ,±ωq(l′)

)
− {ω → −ω}

]
= ±

ΓM2
q

2
f(l)f(l′)e

− ll′

l+l′

(
ωq(l)∓ωq(l′)

)2
×

kF∫
−kF

dσ(k2
F − σ

2)
[
αq
(
σ, ωq(l)

)
αq
(
σ,±ωq(l

′)
)

×e−(l+l′)α2
q(σ,b±(l,l′)) − {ω → −ω, b→ −b}

]
(47)

where the upper sign holds for K1 and the lower one for
K2 and

b±(l, l′) =
lωq(l)± l′ωq(l′)

l + l′
· (48)

We substitute α = αq(σ, b) as new variable for integration,
realize, that only those terms of the polynomial in front
of the Gaussian contribute, which are even in α and odd
in ω and b. Then only the contributions of k2

F − σ
2 which

are linear in α or b± contribute and the integral reduces
to

2m2

q

∫
dα(α − b±(l, l′))(α+ ωq(l)− b±(l, l′))

× (α± ωq(l
′)− b±(l, l′))e−(l+l′)α2

. (49)

One obtains

K1,2(l, l′)= ∓
ΓM2

qm
2

q

√
π

l + l′
f(l)f(l′)e−

ll′

l+l′ (ωq(l)∓ωq(l
′))

2

×
[
b±(l, l′)

(
b±(l, l′)− ωq(l)

)
(b±(l, l′)∓ ωq(l

′)
)

+
1

2(l+ l′)

(
3b±(l, l′)− ωq(l)∓ ωq(l

′)
)]

. (50)

It is easy to see, that in the limit l0 → ∞ both kernels
K1(l, l′) and K2(l, l′) turn into the corresponding expres-
sions (40,41) since the relation ωq(l) → ωq(∞) is fulfilled
in this limit as well.

We will now discuss the behavior of the kernel K1 and
K2 and the solutions of the equations for large l,

l � l0. (51)

First of all one observes that the kernel K2(l, l′) is expo-
nentially suppressed in comparison to K1(l, l′) with the
damping factor

exp

(
−

4ωq(∞)2ll′

l+ l′

)
(52)
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which is the same as in equation (41). Thus for large l this
kernel can contribute only for small l′. In this limit one
obtains for K2

K2(l, l′) =
m2M2

q Γ
√
πl

1/4
0 ω2

q

ql5/4
e1−4ω2

q l
′

. (53)

Thus for large l there will be a contribution to dµq/dl

decaying like l−5/4, yielding a contribution to µq decay-

ing like l−1/4. We will see below, that the self-consistent
contribution from K1 to µq decays slower, so that the con-
tribution from K2 can be neglected. Then the equations
for νq(l

′) and µq(l
′) decouple in the asymptotic regime,

dµq(l)

dl
=

l∫
0

dl′K1(l, l′)µq(l
′). (54)

Next we consider K1 in the limit of large l. In this limit
the leading contribution to K1 yields

K1(l, l′) =

−
m2M2

q Γ
√
πωq(∞)e2

q

√
l0

(l · l′)1/4
exp

(
2
√
l · l′

l + l′
− 1

)

×

(
2
√
l · l′

(l + l′)5/2
+

1

2(l+ l′)3/2
−

1

4
√
l
√
l′
√
l + l′

)
· (55)

We see, that the function f(l)f(l′) which comes from the
variation of ωq as a function of l influences in a crucial
manner the behavior of the integral equation (54). Asymp-
totically this additional term causes a factor 1/(l l′)1/4,
which produces the same powers of l on both sides of equa-
tion (54), if one makes the ansatz of an algebraic decay

µq(l) = cql
κ. (56)

With this ansatz one obtains the following transcendent
equation for κ, if one substitutes l′ = lx

κ = g

1∫
0

dx
xκ−

3
4

√
x+ 1

exp

(
2
√
x

1 + x
− 1

)

×

(
2x

(1 + x)2
+

√
x

2(x+ 1)
−

1

4

)
. (57)

Moreover one realizes using equation (26) that no q-
dependence is contained in the factor in front of the in-
tegral in the last equation. This factor equals a constant
coupling g = −(1/2)

√
2, which does not depend on the

electron-phonon coupling Mq. A numerical solution of
equation (57) yields

κ = −0.07. (58)

The exponent κ as a function of the coupling g from equa-
tion (57) is shown in Figure 1 and can be read of from this
figure. This solution is universal, i.e. the exponent κ does

-0.1

-0.08

-0.06

-0.04

-0.02

0
-0.8 -0.6 -0.4 -0.2

Fig. 1. κ as a function of the coupling g.

not depend on physical quantities like the electron-phonon
coupling. The power decay (56) is valid only for large l,
(51). For small l µ will only vary slowly. Since the crossover
to the power law is expected at l ≈ l0 we assume roughly

µq(l) = cq(l + l0)κ, (59)

taking into account, that µq(l) stays finite for small l,
actually tends to 1.

We can use this expression to integrate the differential
equations for γk,q, where we realize, that it depends only
on q and εk − εk−q

γk,q(∞) = γq(εk − εk−q), (60)

γq(δε) = −Mq

∞∫
0

dle
−

l∫
0

dl′(δε+ωq(l′))
2(
δε+ ωq(l)

)
µq(l).(61)

First we assume δε to be far away from the resonance
−ωq(l). Then the exponential function will decay much
faster than µq(l), so that we replace µq(l) by 1, which
yields

cq =
1

lκ0
(62)

and

γq(δε) = −
Mq

δε+ ωq(∞)
· (63)

The case of degeneracies and nearly degeneracies δε +
ωq(∞) ≈ 0 will be discussed in the next section.

5 The spectral function

In order to determine the damping of phonons in a solid
one has to calculate the phonon correlation function or its
Fourier transform, the spectral function. The latter quan-
tity can directly be inferred by neutron scattering exper-
iments. Furthermore it is closely connected to the imag-
inary part of the retarded Greens function. The phonon



16 The European Physical Journal B

correlation function can be defined as

C(q, t) = 〈aq(t)a
†
q(0)− a†q(0)aq(t)〉

= Tr
(
ρeq[aq(t), a

†
q(0)]

)
, (64)

where

ρeq = exp(−βH)/Tr
(
exp(−βH)

)
. (65)

It is useful to calculate the correlation function at l =∞
since in this limit the phonons are decoupled from the elec-
trons. Unfortunately in our case the Hamiltonian is only
block-diagonal. However if we limit our considerations to
non-superconducting systems we can neglect the electron-
electron interaction. This means we will consider the solid
in the state above Tc. Calculating the thermodynamic ex-
pectation value one obtains

C(q, t) =
∑
k,k′

γk,qγk′,qe
it(εk−q−εk)

〈
[: c†k−qck :, : c†k′ck′−q :]

〉
(66)

=
∑
k

γ2
k,qe

it(εk−q−εk)(nk−q − nk). (67)

For simplicities sake we will use nk at T = 0. If we again
replace the sum by the corresponding integral then we
obtain

C(q, t) =
Γ

2

kF∫
−kF

dσ(k2
F − σ

2)

×

[
− γ2

q

(
σq

m
−

q2

2m

)
e
it
(
−σqm + q2

2m

)

+ γ2
q

(
σq

m
+

q2

2m

)
e
it
(
−σqm −

q2

2m

)]
· (68)

If one defines the spectral function

B(q, ω) =

∞∫
−∞

dtC(q, t)e−iωt (69)

then one obtains the following expression

B(q, ω) =
Γm

2q
×

{[
k2
F −

(
|ω − q2/2m|m

q

)2 ]

×Θ

(
kF −

|ω − q2/2m|m

q

)
−

[
k2
F −

(
|ω + q2/2m|m

q

)2 ]
×Θ

(
kF −

|ω + q2/2m|m

q

)}
γ2
q (−ω). (70)

For ω sufficiently small the condition ω � (vF /c)ωq is
fulfilled, where vF is the Fermi-velocity and c is the speed
of sound. Using this condition both Θ-functions equal 1
and we obtain

B(q, ω) =
m2V

πq
ωγ2

q (−ω). (71)

From equation (63) we conclude that for large values of
ω the spectral function behaves like ω(ω − ωq)−2. In the
general case we obtain using equations (59, 61, 71)

B(q, ω) =

√
2πc2qω

2
√
l0ωq(∞)e2

×

[ ∞∫
0

dl

(
ω − ωq(∞)−

1

2
√
l + l0

)

×

(
l0

l+ l0

)1/4

(l + l0)κ exp
(
−
(
ω − ωq(∞)

)2
l

+2
(
ω − ωq(∞)

) [√
l + l0 −

√
l0

])]2

. (72)

Rescaling equation (72) we get an analytical understand-
ing of the dependence of the spectral function on the cou-
pling

B(q, ω) =

√
2π
√
l0|lκ0 |

2c2qω

2e2ωq(∞)

×

∣∣∣∣
∞∫

0

dx

(
δω
√
l0 −

1

2
√
x+ 1

)

×

(
1

x+ 1

)1/4

(x+ 1)κ exp
(
−(δω)2l0x

+2δω
√
l0(
√
x+ 1− 1)

)∣∣∣∣2, (73)

where we have set δω = ω−ωq(∞). If we substitute 1+x =
y/(δω2l0) and use equation (62) then B can be rewritten

in terms of a scaling function B̂(δω
√
l0).

B(q, ω) =

√
l0ω

ωq(∞)
B̂
(
δω
√
l0

)
, (74)

B̂(ν) =

√
2π

2e2|ν|1+4κ

∣∣∣∣
∞∫
ν2

dy

(
±1−

1

2
√
y

)

×yκ−
1
4 exp (−y ± 2

√
y)

∣∣∣∣2, (75)

where the upper sign stands for positive ν = δω
√
l0 and

the lower sign for negative ν, respectively. The function
B̂(ν) is plotted in Figure 2. From this relation we observe
that the width of the spectral function grows linearly with
1/
√
l0 or M2

q . Simultaneously the height of this function

scales like
√
l0.

Finally we examine the behavior of B(q, ω) for very
small and for very large δω. In the first case, that is for
δω � 1/

√
l0 we may replace the lower limit of the integral

in (75) by 0 which yields the values for the integrals C+ =
2.63 for positive δω and C− = −2.24 for negative δω.

B(q, ω) =

√
2π
√
l0C

2
±

2e2
(
|δω|
√
l0
)1+4κ · (76)
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Fig. 2. The rescaled spectral function B̂(ν) versus ν from
the numerical solution (solid line) and from the approximate
solutions (dashed line).

The corresponding asymptotic behavior is shown in fig-
ure 2. There is however a large correction for finite δω,
yielding C± + [(|δω|

√
l0)2κ+1/2]/(2κ + 1/2) for the inte-

gral. In the case of large δω � 1/
√
l0 one concludes from

equation (63)

B(q, ω) =

√
2πω

2e2
√
l0ωq(∞)(δω)2

· (77)

The crossover between the two types of behavior equa-
tions (76, 77) occurs at |δω| ≈ 1/

√
l0.

The conventional result given in reference [1] yields
(for |δω| � ω) a Lorentzian damping

B(q, ω) =
2γ1

(δω)2 + γ2
1

(78)

with a width γ1 which is related to our quantities by

1
√
l0

=

√
8

π
e2γ1. (79)

Thus the width of the spectral function is the same in
both approaches. Moreover there is agreement with the
behaviour for |δω| � γ1. For small δω, however, we obtain
a different behaviour.

6 Discussion and conclusion

Let us sum up the main results of this paper. We have
examined the dynamics of the electron-phonon problem
using continuous unitary transformations. This transfor-
mation was designed as to eliminate the electron-phonon
coupling [16], the main results of which were summarized
in Section 2. The good agreement of Tc with the Eliash-
berg theory was found in [5,6] and summarized here in
Section 1. Here we were interested in the dynamics of the

phonons. Therefore the main part of this paper is dedi-
cated to the transformation of the creation and annihila-
tion operators for phonons. Under the flow of these opera-
tors due to the unitary transformation they decay into
electronic particle-hole excitations. The approximations
used are similar to those performed in [11–15]. The decay
of the operators is described by a linear integro-differential
equation of the Volterra-type. The equation can be solved
analytically if one neglects the flow of the electron ener-
gies εk and takes into account the l-dependence of the
phonon frequencies ωq. We obtained an algebraic decay
of the bosonic operators, see equations (58, 59). Surpris-
ingly the spectral function (previous section) turned out
to be universal in the sense that the exponent κ, which
describes the behavior of the spectral function for small
δω = ω − ωq(∞) does not depend on physical quan-
tities like the electron-phonon coupling. We cannot ex-
clude, however, that taking into account more complex
excitations like those appearing in equation (29) will have
some effect on the exponent κ. The scaling function equa-
tion (75) is universal as long as the coupling is not too
strong (see the discussion after Eq. (43)). The electron-
phonon coupling enters only in the scales. The width of
the spectral function is the same as obtained in the con-
ventional approach [1]. For small δω the spectral function
decays with δω−1−4κ with κ = −0.07, whereas for large
δω it decreases with the conventional δω−2. This paper
shows that the method of flow equations can also be used
to investigate the dynamics due to the electron-phonon
interaction.

The authors are indebted to Andreas Mielke for useful discus-
sions and critical reading of the typescript.
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